
• The  weakness of  the  Backward-Difference  method results from the

fact  that  the  local truncation error has one of  order                  , and

another  of  order            . This requires that  time  intervals  be  made

much  smaller  than  the x-axis  intervals.

• It  would  clearly  desirable to have a procedure with  local truncation

error of order                              .

• The  first  step  in  this  direction  is to use  central difference equation 

for  time  derivative  which  has a truncation error  of  order                . 

But, unfortunately  this  method  has  serious  stability  problems. 
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This  method is  derived  by  averaging the Forward-Difference method

at the nth step in t,
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and the Backward-Difference method at the (n+1)th step in t,
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which has the local truncation error,
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Note that the averaged-difference method,
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has local truncation error of order                              . This  is  known as

the Crank-Nicolson method. Recalling that, 
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where,

this method can be written in the matrix form as,
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and the matrices A and B are given by,

and,



• The  matrix  A  is  positive  definite, strictly  diagonally  dominant 

and  tridiagonal. So, Crout factorization  (for rather small systems)

or  SOR  method (for large systems) can be used to solve the system.

• The Crank-Nicolson method is unconditionally stable and has local

truncation error 

x 0.1  t 0.01 
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The  following  table  represents  the  results  for  the  Crank-Nicolson 

method. 
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• Recall  that  the  Forward-Difference method  gave dramatically  poor 

results  for  this  choice  of       and        , but  the Backward-Difference 

method gave results that were accurate to about                for entries in

the middle of the table. 

• The  results  in  the  table  indicate  the  increase  in  accuracy  of   the 

Crank-Nicolson method  over  the  Backward-Difference  method.  
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Solving Hyperbolic Partial Differential Equations
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Using central approximation for time and spatial derivatives, we have,

This equation can be rewritten as,
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where,  t / x    . Recalling that,

The discretized equation can be written in the matrix form as,

n 1 n n 1u Au u  



where,
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A

The discretized form of  the wave equation imply that the (n+1)th time

step requires values  from  the  nth  and  (n-1)th time steps. At the start 



point, values for n=0 are given by,

But, values  for  n=1  which  are  needed  to  compute          , must  be

obtained  from  the  initial-velocity  condition, 
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The above equation can be rewrite as,
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Or,
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However,  this  approximation  has  truncation  error  of  order             ,

whereas  truncation  error  in  the  main equation is of  order                 .   
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The previous equation represents  the Taylor expansion of u(x,t)  about

. Setting            ,             and           , we have,
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This produces an approximation with error                  ,   3
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If the second derivative of f exists but  is  not  readily  available, we can

use  the equation,
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This implies that,
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Because                         , we ca write this as, t / x   
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The method used for solving wave equation is stable only if                  . 
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