* The weakness of the Backward-Difference method results from the
fact that the local truncation error has one of orderO((Ax)z) , and
another of order o(At).This requires that time intervals be made
much smaller than the x-axis intervals.

* It would clearly desirable to have a procedure with local truncation
error of order O((Ax)2 +(At)2) .

* The first step in this direction isto use central difference equation
for time derivative which has a truncation error of orderO((At)z).
But, unfortunately this method has serious stability problems.

Crank-Nicolson Method
This method is derived by averaging the Forward-Difference method

at the nth step in t,
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which has the local truncation error,
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and the Backward-Difference method at the (n+1)th step in t,
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which has the local truncation error,
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Note that the averaged-difference method,
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has local truncation error of order O((Ax)2 +(At)2) . This is known as

the Crank-Nicolson method. Recalling that,
w(O. 1) =u(l,t) =0, =0, and ux,0)=f(x), 0<x</|
this method can be written in the matrix form as,
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and the matrices A and B are given by,
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* The matrix A iIs positive definite, strictly diagonally dominant
and tridiagonal. So, Crout factorization (for rather small systems)
or SOR method (for large systems) can be used to solve the system.

* The Crank-Nicolson method is unconditionally stable and has local

truncation error O((Ax)2 +(At)2)

Example
Use the Crank-Nicolson method with AX=0.1 and At=0.01 to
approximate the solution to the heat equation
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subject to the constraints



u(0.1) =u(l.r) =0,

Solution

The following table represents the results for the Crank-Nicolson

method.

0 <t.

At

u(x,0) = sinmx,

0<x<1

eXuUL

X; Ui50 u(x;, 0.5) | Ui50 — u(x;, 0.9)]
0.0 0 0

0.1 0.00230512 0.00222241 8.271 x 107>
0.2 0.00438461 0.00422728 1.573 x 10~
0.3 0.00603489 0.00581836 2.165 x 107
0.4 0.00709444 0.00683989 2.546 x 10~
0.5 0.00745954 0.00719188 2.677 x 10~
0.6 0.00709444 0.00683989 2.546 x 107
0.7 0.00603489 0.00581836 2.165 x 10~
0.8 0.00438461 0.00422728 1.573 < 10~*
0.9 0.00230512 0.00222241 8.271 x 107°
1.0 0 0




 Recall that the Forward-Difference method gave dramatically poor
results for this choice of At and AX , but the Backward-Difference
method gave results that were accurate to about2 x 10— for entries in
the middle of the table.

* The results in the table indicate the increase In accuracy of the

Crank-Nicolson method over the Backward-Difference method.

Solving Hyperbolic Partial Differential Equations
0% u 5 0%u
ﬁ{x.r) — o m(a.r) =0, O<x<l!l, t=0

w(0,f) = u(l,t) =0, for =0

J
u(x,0) = f(x)., and 5(1, 0) =g(x), for 0==x<I



Using central approximation for time and spatial derivatives, we have,
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This equation can be rewritten as,
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where, A =(aAt)/Ax. Recalling that,
w(O. 1) =u(l,t) =0, =0, and ux,0)=f(x), 0<x</|

The discretized equation can be written in the matrix form as,
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The discretized form of the wave equation imply that the (n+1)th time

step requires values from the nth and (n-1)th time steps. At the start



point, values for n=0 are given by,

ux,0) = fx)., 0=x=<lI

. 2
But, values for n=1 which are needed to compute U; , must be

obtained from the initial-velocity condition,

5
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One approach is to replace du/dt by a forward-difference approximation,
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The above equation can be rewrite as,
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Or,

u; =u; +(At)g(x;)

However, this approximation has truncation error of orderO(At) ,

whereas truncation error in the main equation is of orderO((At)z).

Improving the Initial Approximation
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The previous equation represents the Taylor expansion of u(x,t) about

t". Settingt" =0, X=X and t =t*, we have,
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If " exists, then
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u(x;,t) =u(x;,0)+g(x;)At+f@(x;)



This produces an approximation with error O((At)g) ,

u; =f (%) +9(x)At+f2(x,) 2(2At)

If the second derivative of f exists but is not readily available, we can

use the equation,

f”{-ri} —
This implies that,

u; =f(x;)+9(x;) At+[f 1) f(xi)+f(Xi1)]02LZ((Ait))2




Because A = (0At)/ AX | we ca write this as,

0= (192) ()2 () + 28 (5, 0 6,

The method used for solving wave equation is stable only if aﬂ <1.

AX



