- The weakness of the Backward-Difference method results from the fact that the local truncation error has one of order $\mathrm{O}\left((\Delta \mathrm{x})^{2}\right)$, and another of order $\mathrm{O}(\Delta \mathrm{t})$. This requires that time intervals be made much smaller than the x -axis intervals.
- It would clearly desirable to have a procedure with local truncation error of order $\mathrm{O}\left((\Delta \mathrm{x})^{2}+(\Delta \mathrm{t})^{2}\right)$.
- The first step in this direction is to use central difference equation for time derivative which has a truncation error of order $\mathrm{O}\left((\Delta t)^{2}\right)$. But, unfortunately this method has serious stability problems.

Crank-Nicolson Method

This method is derived by averaging the Forward-Difference method at the nth step in t,

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}-\alpha^{2} \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{(\Delta x)^{2}}=0
$$

which has the local truncation error,

$$
\tau_{\mathrm{F}}=\frac{\Delta \mathrm{t}}{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}+\mathrm{O}\left((\Delta \mathrm{t})^{2}\right)+\mathrm{O}\left((\Delta \mathrm{x})^{2}\right)
$$

and the Backward-Difference method at the $(n+1)$ th step in t,

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}-\alpha^{2} \frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}}{(\Delta x)^{2}}=0
$$

which has the local truncation error,

$$
\tau_{\mathrm{B}}=-\frac{\Delta \mathrm{t}}{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}+\mathrm{O}\left((\Delta \mathrm{t})^{2}\right)+\mathrm{O}\left((\Delta \mathrm{x})^{2}\right)
$$

Note that the averaged-difference method,

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}-\frac{\alpha^{2}}{2}\left[\frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{(\Delta x)^{2}}+\frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}}{(\Delta x)^{2}}\right]=0
$$

has local truncation error of order $\mathrm{O}\left((\Delta \mathrm{x})^{2}+(\Delta \mathrm{t})^{2}\right)$. This is known as the Crank-Nicolson method. Recalling that,

$$
u(0, t)=u(l, t)=0, \quad t>0, \quad \text { and } \quad u(x, 0)=f(x), \quad 0 \leq x \leq l
$$

this method can be written in the matrix form as,
$\mathrm{Au}^{\mathrm{n}+1}=\mathrm{Bu}^{\mathrm{n}}$
where,

$$
\mathrm{u}^{\mathrm{n}}=\left(\begin{array}{llll}
\mathrm{u}_{1}^{\mathrm{n}} & \mathrm{u}_{2}^{\mathrm{n}} & \ldots & \mathrm{u}_{\mathrm{m}-1}^{\mathrm{n}}
\end{array}\right)^{\mathrm{t}} \quad \lambda=\alpha^{2} \frac{\Delta \mathrm{t}}{(\Delta \mathrm{x})^{2}}
$$

and the matrices A and B are given by,

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
(1+\lambda) & -\frac{\lambda}{2} & 0, \cdots \cdots \cdots \cdots 0 \\
-\frac{\lambda}{2} & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & 0 \\
0 & \cdots \cdots & 0 & -\frac{\lambda}{2} & (1+\lambda)
\end{array}\right]
\end{aligned}
$$

and,

- The matrix A is positive definite, strictly diagonally dominant and tridiagonal. So, Crout factorization (for rather small systems) or SOR method (for large systems) can be used to solve the system.
- The Crank-Nicolson method is unconditionally stable and has local truncation error $\mathrm{O}\left((\Delta \mathrm{x})^{2}+(\Delta \mathrm{t})^{2}\right)$

Example

Use the Crank-Nicolson method with $\Delta x=0.1$ and $\Delta t=0.01$ to approximate the solution to the heat equation

$$
\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)=0, \quad 0<x<1, \quad 0<t
$$

subject to the constraints

$$
u(0, t)=u(1, t)=0, \quad 0<t, \quad u(x, 0)=\sin \pi x, \quad 0 \leq x \leq 1
$$

Solution

The following table represents the results for the Crank-Nicolson method.

x_{i}	u_{i}^{50}	exatet	
0.0	0	0	$\left\|u_{i}^{50}-u\left(x_{i}, 0.5\right)\right\|$
0.1	0.00230512	0.00222241	8.271×10^{-5}
0.2	0.00438461	0.00422728	1.573×10^{-4}
0.3	0.00603489	0.00581836	2.165×10^{-4}
0.4	0.00709444	0.00683989	2.546×10^{-4}
0.5	0.00745954	0.00719188	2.677×10^{-4}
0.6	0.00709444	0.00683989	2.546×10^{-4}
0.7	0.00603489	0.00581836	2.165×10^{-4}
0.8	0.00438461	0.00422728	1.573×10^{-4}
0.9	0.00230512	0.00222241	8.271×10^{-5}
1.0	0	0	

- Recall that the Forward-Difference method gave dramatically poor results for this choice of Δt and Δx, but the Backward-Difference method gave results that were accurate to about 2×10^{-3} for entries in the middle of the table.
- The results in the table indicate the increase in accuracy of the Crank-Nicolson method over the Backward-Difference method.

Solving Hyperbolic Partial Differential Equations

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}(x, t)-\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)=0, \quad 0<x<l, \quad t>0 \\
u(0, t)=u(l, t)=0, \quad \text { for } \quad t>0 \\
u(x, 0)=f(x), \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad \text { for } \quad 0 \leq x \leq l
\end{gathered}
$$

Using central approximation for time and spatial derivatives, we have,

$$
\frac{\mathrm{u}_{\mathrm{i}}^{\mathrm{n}+1}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{i}}^{\mathrm{n}-1}}{(\Delta \mathrm{t})^{2}}-\alpha^{2} \frac{\mathrm{u}_{\mathrm{i}+1}^{\mathrm{n}}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{i}-1}^{\mathrm{n}}}{(\Delta \mathrm{x})^{2}}=0 \quad i=1,2, \ldots, m-1
$$

This equation can be rewritten as,
$\mathrm{u}_{\mathrm{i}}^{\mathrm{n}+1}=2\left(1-\lambda^{2}\right) \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}+\lambda^{2}\left(\mathrm{u}_{\mathrm{i}+1}^{\mathrm{n}}+\mathrm{u}_{\mathrm{i}-1}^{\mathrm{n}}\right)-\mathrm{u}_{\mathrm{i}}^{\mathrm{n}-1} \quad i=1,2, \ldots, m-1$
where, $\lambda=(\alpha \Delta t) / \Delta x$. Recalling that,

$$
u(0, t)=u(l, t)=0, \quad t>0, \quad \text { and } \quad u(x, 0)=f(x), \quad 0 \leq x \leq l
$$

The discretized equation can be written in the matrix form as,
$u^{n+1}=A u^{n}-u^{n-1}$
where,

$$
\mathrm{u}^{\mathrm{n}}=\left(\begin{array}{llll}
\mathrm{u}_{1}^{\mathrm{n}} & \mathrm{u}_{2}^{\mathrm{n}} & \ldots & \mathrm{u}_{\mathrm{m}-1}^{\mathrm{n}}
\end{array}\right)^{\mathrm{t}}
$$

and,

The discretized form of the wave equation imply that the $(n+1)$ th time step requires values from the nth and ($n-1$)th time steps. At the start
point, values for $\mathrm{n}=0$ are given by,

$$
u(x, 0)=f(x), \quad 0 \leq x \leq l
$$

But, values for $n=1$ which are needed to compute u_{i}^{2}, must be obtained from the initial-velocity condition,

$$
\frac{\partial u}{\partial t}(x, 0)=g(x), \quad 0 \leq x \leq l
$$

One approach is to replace $\partial u / \partial t$ by a forward-difference approximation,

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\left(\mathrm{x}_{\mathrm{i}}, 0\right)=\frac{\mathrm{u}_{\mathrm{i}}^{1}-\mathrm{u}_{\mathrm{i}}^{0}}{\Delta \mathrm{t}}
$$

The above equation can be rewrite as,
$u_{i}^{1}=u_{i}^{0}+\Delta t \frac{\partial u}{\partial x}\left(x_{i}, 0\right)$
Or,
$u_{i}^{1}=u_{i}^{0}+(\Delta t) g\left(x_{i}\right)$

However, this approximation has truncation error of order $O(\Delta t)$, whereas truncation error in the main equation is of order $\mathrm{O}\left((\Delta t)^{2}\right)$.

Improving the Initial Approximation

$$
\begin{aligned}
u(x, t)= & u\left(x, t^{n}\right)+\frac{\partial u}{\partial t}\left(x, t^{n}\right)\left(t-t^{n}\right)+\frac{\partial^{2} u}{\partial t^{2}}\left(x, t^{n}\right) \frac{\left(t-t^{n}\right)^{2}}{2}+ \\
& \frac{\partial^{3} u}{\partial t^{3}}\left(x, t^{n}\right) \frac{\left(t-t^{n}\right)^{3}}{6}+\ldots
\end{aligned}
$$

The previous equation represents the Taylor expansion of $u(x, t)$ about t^{n}. Setting $\mathrm{t}^{\mathrm{n}}=0, \mathrm{x}=\mathrm{x}_{\mathrm{i}}$ and $\mathrm{t}=\mathrm{t}^{1}$, we have,
$\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{t}^{1}\right)=\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}, 0\right)+\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\left(\mathrm{x}_{\mathrm{i}}, 0\right) \Delta \mathrm{t}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}\left(\mathrm{x}_{\mathrm{i}}, 0\right) \frac{(\Delta \mathrm{t})^{2}}{2}+\mathrm{O}\left((\Delta \mathrm{t})^{3}\right)$
If $f^{\prime \prime}$ exists, then
$\frac{\partial^{2} u}{\partial t^{2}}\left(x_{i}, 0\right)=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, 0\right)=\alpha^{2} \frac{d^{2} f}{d x^{2}}\left(x_{i}\right)=\alpha^{2} f^{\prime \prime}\left(x_{i}\right)$
and
$\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{t}^{1}\right)=\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}, 0\right)+\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right) \Delta \mathrm{t}+\mathrm{f}^{(2)}\left(\mathrm{x}_{\mathrm{i}}\right) \frac{\alpha^{2}(\Delta \mathrm{t})^{2}}{2}+\mathrm{O}\left((\Delta \mathrm{t})^{3}\right)$

This produces an approximation with error $\mathrm{O}\left((\Delta t)^{3}\right)$,
$u_{i}^{1}=f\left(x_{i}\right)+g\left(x_{i}\right) \Delta t+f^{(2)}\left(x_{i}\right) \frac{\alpha^{2}(\Delta t)^{2}}{2}$
If the second derivative of f exists but is not readily available, we can
use the equation,
$f^{\prime \prime}\left(x_{i}\right)=\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)-2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{(\Delta \mathrm{x})^{2}}$
This implies that,

$$
\mathrm{u}_{\mathrm{i}}^{1}=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right) \Delta \mathrm{t}+\left[\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)\right] \frac{\alpha^{2}(\Delta \mathrm{t})^{2}}{2(\Delta \mathrm{x})^{2}}
$$

Because $\lambda=(\alpha \Delta t) / \Delta x$, we ca write this as,

$$
u_{i}^{1}=\left(1-\lambda^{2}\right) f\left(x_{i}\right)+\frac{\lambda^{2}}{2} f\left(x_{i+1}\right)+\frac{\lambda^{2}}{2} f\left(x_{i-1}\right)+g\left(x_{i}\right) \Delta t
$$

The method used for solving wave equation is stable only if $\alpha \frac{\Delta t}{\Delta x} \leq 1$.

